head_emailseth@tkflow.com
Ertu með spurningu? Hringdu í okkur: 0086-13817768896

Grunnhugmyndin um hreyfingu vökva - Hverjar eru meginreglur vökvahreyfingar

Inngangur

Í fyrri kafla var sýnt fram á að nákvæmar stærðfræðilegar aðstæður fyrir krafta sem vökvar beita í kyrrstöðu væri auðveldlega hægt að fá. Þetta er vegna þess að í hydrostatic koma aðeins einfaldir þrýstikraftar við sögu. Þegar vökvi á hreyfingu er skoðaður verður greiningarvandamálið um leið mun erfiðara. Ekki aðeins þarf að taka tillit til stærðar og stefnu agnahraðans, heldur eru einnig flókin áhrif seigjunnar sem veldur skurði eða núningsálagi milli hreyfanlegra vökvaagna og við mörk innihaldsins. Hlutfallsleg hreyfing sem er möguleg á milli mismunandi þátta vökvahlutans veldur því að þrýstingur og klippiálag er töluvert breytilegt frá einum stað til annars eftir flæðisskilyrðum. Vegna þess hve flókið flæðifyrirbærið er flókið er nákvæm stærðfræðileg greining aðeins möguleg í fáum, og frá verkfræðilegu sjónarmiði sumum óframkvæmanlegum, tilfellum. Því er nauðsynlegt að leysa flæðisvandamál annað hvort með tilraunum eða með því að gera ákveðnar einfaldandi forsendur sem nægja til að fá fræðilega lausn. Þessar tvær nálganir útiloka ekki gagnkvæmt, þar sem grundvallarlögmál vélfræðinnar eru alltaf gild og gera kleift að nota að hluta til fræðilegar aðferðir í nokkrum mikilvægum tilvikum. Einnig er mikilvægt að ganga úr skugga um í tilraunaskyni hversu umfang fráviks frá raunverulegum skilyrðum leiðir af einfaldaðri greiningu.

Algengasta einfalda forsendan er að vökvinn sé tilvalinn eða fullkominn, þannig að útrýma flóknandi seigfljótandi áhrifum. Þetta er grundvöllur klassískrar vatnsaflsfræði, grein hagnýtrar stærðfræði sem hefur fengið athygli frá svo framúrskarandi fræðimönnum eins og Stokes, Rayleigh, Rankine, Kelvin og Lamb. Það eru alvarlegar innbyggðar takmarkanir í klassísku kenningunni, en þar sem vatn hefur tiltölulega lága seigju, hegðar það sér sem raunverulegur vökvi í mörgum aðstæðum. Af þessum sökum má líta á klassíska vatnsaflsfræði sem dýrmætan bakgrunn í rannsóknum á eiginleikum hreyfingar vökva. Þessi kafli fjallar um grundvallarvirki vökvahreyfingar og þjónar sem grunnkynning á síðari köflum sem fjalla um sértækari vandamál sem upp koma í vökvakerfi byggingarverkfræði. Þrjár mikilvægu grunnjöfnur hreyfingar vökva, þ.e. samfellu-, Bernoulli- og skriðþungajöfnur eru fengnar og mikilvægi þeirra útskýrt. Síðar er farið yfir takmarkanir klassísku kenningarinnar og hegðun raunverulegs vökva lýst. Gert er ráð fyrir ósamþjöppanlegum vökva í gegn.

Tegundir flæðis

Hægt er að flokka hinar ýmsu gerðir vökvahreyfinga sem hér segir:

1. Turbulent og lagskipt

2.Rotational og irrotational

3.Stöðugt og óstöðugt

4.Uniform og ósamræmt.

Dælanleg skólpdæla

MVS röð axial-rennslisdælur AVS röð blandað flæðisdælur (Lóðrétt ásflæði og blandað rennsli dýfa skólpdælur) eru nútíma framleiðsla sem hefur verið hönnuð með góðum árangri með því að taka upp erlenda nútímatækni. Afkastageta nýju dælanna er 20% meiri en þær gömlu. Skilvirkni er 3 ~ 5% hærri en þau gömlu.

asd (1)

Turbulent og lagskipt flæði.

Þessi hugtök lýsa líkamlegu eðli flæðisins.

Í ólgandi flæði er framgangur vökvaagnanna óreglulegur og það er að því er virðist tilviljunarkennd stöðuskipti. Einstakar agnir eru háðar sveiflukenndum trans. vísuhraða þannig að hreyfingin er hvimleiða og hlykkjóttur frekar en réttar. Ef litarefni er sprautað á ákveðnum stað mun það dreifast hratt um flæðistrauminn. Ef um er að ræða ókyrrð í pípu, til dæmis, myndi tafarlaus skráning á hraðanum á hluta leiða í ljós áætlaða dreifingu eins og sýnt er á mynd 1(a). Stöðugur hraði, eins og myndi vera skráður með venjulegum mælitækjum, er sýndur með punktum og ljóst er að ókyrrð rennsli einkennist af óstöðugum sveifluhraða sem er lagður ofan á tímabundið stöðugt meðaltal.

asd (2)

Mynd 1(a) Óróaflæði

asd (3)

Mynd.1(b) Lagflæði

Í lagskiptu flæði fara allar vökvaagnirnar eftir samsíða slóðum og það er enginn þverhluti hraðans. Skipuleg framvinda er þannig að hver ögn fylgir nákvæmlega slóð ögnarinnar á undan henni án nokkurs fráviks. Þannig verður þunnur þráður af litarefni áfram sem slíkur án dreifingar. Það er mun meiri þverhraðahalli í lagskiptu rennsli (Mynd 1b) en í ólgandi rennsli. Til dæmis fyrir pípu er hlutfall meðalhraða V og hámarkshraða V max 0,5 með ókyrrð og 0 ,05 með lagflæði.

Lagflæði tengist lágum hraða og seigfljótum hægum vökva. Í vökvakerfi í leiðslum og opnum rásum eru hraðarnir næstum alltaf nægilega háir til að tryggja óstöðugt flæði, þó þunnt lagskipt lag haldist í nálægð við fast landamæri. Lögmálin um lagflæði eru að fullu skilin og fyrir einföld jaðarskilyrði er hægt að greina hraðadreifingu stærðfræðilega. Vegna óreglulegs pulsandi eðlis hefur ókyrrð flæði stöðvað stranga stærðfræðilega meðferð og til að leysa hagnýt vandamál er nauðsynlegt að reiða sig að miklu leyti á reynslu- eða hálfreynslusambönd.

asd (4)

Lóðrétt túrbínu slökkvidæla

Gerð nr: XBC-VTP

XBC-VTP Series lóðrétt langás slökkvidælur eru röð af eins þrepa, fjölþrepa dreifidælum, framleiddar í samræmi við nýjasta landsstaðalinn GB6245-2006. Við bættum líka hönnunina með tilvísun í staðal United States Fire Protection Association. Það er aðallega notað til brunavatnsveitu í jarðolíu, jarðgasi, orkuverum, bómullartextíl, bryggju, flugi, vörugeymsla, háhýsi og öðrum atvinnugreinum. Það getur einnig átt við um skip, sjótank, slökkviskip og önnur birgðatilefni.

Snúnings- og snúningsflæði.

Sagt er að flæðið snúist ef hver vökvaögn hefur hornhraða um sína eigin massamiðju.

Mynd 2a sýnir dæmigerða hraðadreifingu sem tengist ólgandi flæði framhjá beinum mörkum. Vegna ójafnrar hraðadreifingar verður ögn með tvo ása sína upphaflega hornrétt fyrir aflögun með litlum snúningi. Á mynd 2a er flæði í hring.

slóð er sýnd, með hraðanum í réttu hlutfalli við radíusinn. Tveir ásar ögnarinnar snúast í sömu átt þannig að flæðið snýst aftur.

asd (5)

Mynd 2(a) Snúningsflæði

Til þess að flæðið sé ósnúið verður hraðadreifingin við hlið beinu mörkanna að vera jöfn (Mynd 2b). Ef um er að ræða flæði í hringlaga braut má sýna fram á að snúningsflæði eigi aðeins við að því tilskildu að hraðinn sé í öfugu hlutfalli við radíusinn. Við fyrstu sýn á mynd 3 virðist þetta rangt, en við nánari athugun kemur í ljós að ásarnir tveir snúast í gagnstæðar áttir þannig að það er jöfnunaráhrif sem framleiðir meðalstefnu ásanna sem er óbreytt frá upphaflegu ástandi.

asd (6)

Mynd 2(b) Snúningsflæði

Vegna þess að allir vökvar búa yfir seigju, er lágmark raunverulegs vökva aldrei raunverulegur róting og lagflæði er auðvitað mjög snúningslegt. Þannig er ósnúningsflæði tilgáta ástand sem hefði aðeins akademískan áhuga ef það væri ekki fyrir þá staðreynd að í mörgum tilfellum ókyrrðarflæðis eru snúningseiginleikar svo óverulegir að þeir gætu verið vanræktir. Þetta er þægilegt vegna þess að hægt er að greina ósnúningsflæði með stærðfræðilegum hugtökum klassískrar vatnsaflsfræði sem vísað er til áðan.

Miðflóttavatnsáfangadæla

Gerð nr:ASN ASNV

Módel ASN og ASNV dælur eru eins þrepa miðflótta miðflótta dælur með tvöföldum sogskiptingum og notaðar eða fljótandi flutningar fyrir vatnsverk, loftræstingu, byggingu, áveitu, frárennslisdælustöð, raforkustöð, vatnsveitukerfi í iðnaði, slökkvistarf kerfi, skip, bygging og svo framvegis.

asd (7)

Stöðugt og óstöðugt flæði.

Sagt er að flæðið sé stöðugt þegar aðstæður á hverjum tímapunkti eru stöðugar með tilliti til tíma. Strangt túlkun á þessari skilgreiningu myndi leiða til þeirrar niðurstöðu að ókyrrð flæði væri aldrei raunverulega stöðugt. Hins vegar, í þessum tilgangi, er þægilegt að líta á almenna vökvahreyfingu sem viðmiðið og óreglulegar sveiflur sem tengjast ókyrrðinni sem aðeins aukaáhrif. Augljóst dæmi um stöðugt flæði er stöðug losun í leiðslu eða opinni rás.

Afleiðingin er sú að flæðið er óstöðugt þegar aðstæður eru mismunandi eftir tíma. Dæmi um óstöðugt flæði er breytilegt losun í rás eða opinni rás; þetta er venjulega skammvinnt fyrirbæri sem kemur í kjölfar, eða fylgt eftir með, stöðugri útskrift. Annað kunnuglegt

dæmi um reglubundnari eðli eru ölduhreyfingar og hringrásarhreyfingar stórra vatnshlota í sjávarföllum.

Flest hagnýt vandamál í vökvaverkfræði snúa að stöðugu flæði. Þetta er heppilegt þar sem tímabreytan í óstöðugu flæði flækir greininguna verulega. Til samræmis við það, í þessum kafla, verður tillit til óstöðugs flæðis bundið við nokkur tiltölulega einföld tilvik. Hins vegar er mikilvægt að hafa í huga að nokkur algeng tilvik um óstöðugt flæði geta minnkað í stöðugt ástand í krafti meginreglunnar um hlutfallshreyfingu.

Þannig getur vandamál sem felur í sér skip sem fer í gegnum kyrrt vatn verið umorðað þannig að skipið sé kyrrstætt og vatnið sé á hreyfingu; eina viðmiðunin fyrir líkt vökvahegðun er að hlutfallslegur hraði skuli vera sá sami. Aftur getur ölduhreyfing í djúpu vatni minnkað niður í

stöðugt ástand með því að gera ráð fyrir að áhorfandi ferðast með öldunum á sama hraða.

asd (8)

Lóðrétt túrbínudæla

Dísilvél Lóðrétt túrbína fjölþrepa miðflótta innbyggða ás vatns frárennslisdæla Þessi tegund af lóðréttri frárennslisdælu er aðallega notuð til að dæla ekki tæringu, hitastig minna en 60 °C, sviflausn (þar með talið trefjar, grjónin) minna en 150 mg/L innihald af skólpið eða skólpið. VTP gerð lóðrétt frárennslisdæla er í VTP gerð lóðréttum vatnsdælum, og á grundvelli hækkunar og kraga, stilltu rör olíu smurningu er vatn. Getur reykhitastig undir 60 °C, sent til að innihalda ákveðið fast korn (eins og brotajárn og fínan sand, kol osfrv.) af skólpi eða frárennsli.

Samræmt og ójafnt flæði.

Sagt er að flæðið sé einsleitt þegar engin breyting er á stærð og stefnu hraðavigursins frá einum stað til annars á flæðisbrautinni. Til að uppfylla þessa skilgreiningu verður bæði flæðisflöturinn og hraðinn að vera sá sami við hvern þverskurð. Ójafnt flæði á sér stað þegar hraðavigurinn er breytilegur eftir staðsetningu, dæmigerð dæmi er flæði milli samruna eða mislægra marka.

Báðar þessar aðrar flæðiskilyrði eru algengar í vökvakerfi með opnum rásum, þó að strangt til tekið sé, þar sem jafnt flæði er alltaf nálgast án einkenna, er það kjörástand sem er aðeins nálgað og aldrei í raun náð. Það skal tekið fram að skilyrðin tengjast rúmi frekar en tíma og því í tilfellum um lokuð rennsli (td. rör undir þrýstingi) eru þær alveg óháðar stöðugu eða óstöðugu eðli flæðisins.


Pósttími: 29. mars 2024